Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(39): e2301201, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37264768

RESUMO

Graphene-based materials (GBMs) have promising applications in various sectors, including pulmonary nanomedicine. Nevertheless, the influence of GBM physicochemical characteristics on their fate and impact in lung has not been thoroughly addressed. To fill this gap, the biological response, distribution, and bio-persistence of four different GBMs in mouse lungs up to 28 days after single oropharyngeal aspiration are investigated. None of the GBMs, varying in size (large versus small) and carbon to oxygen ratio as well as thickness (few-layers graphene (FLG) versus thin graphene oxide (GO)), induce a strong pulmonary immune response. However, recruited neutrophils internalize nanosheets better and degrade GBMs faster than macrophages, revealing their crucial role in the elimination of small GBMs. In contrast, large GO sheets induce more damages due to a hindered degradation and long-term persistence in macrophages. Overall, small dimensions appear to be a leading feature in the design of safe GBM pulmonary nanovectors due to an enhanced degradation in phagocytes and a faster clearance from the lungs for small GBMs. Thickness also plays an important role, since decreased material loading in alveolar phagocytes and faster elimination are found for FLGs compared to thinner GOs. These results are important for designing safer-by-design GBMs for biomedical application.


Assuntos
Grafite , Animais , Camundongos , Grafite/farmacologia , Pulmão , Macrófagos
2.
Part Fibre Toxicol ; 19(1): 62, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131347

RESUMO

BACKGROUND: A key aspect of any new material safety assessment is the evaluation of their in vivo genotoxicity. Graphene oxide (GO) has been studied for many promising applications, but there are remaining concerns about its safety profile, especially after inhalation. Herein we tested whether GO lateral dimension, comparing micrometric (LGO) and nanometric (USGO) GO sheets, has a role in the formation of DNA double strand breaks in mouse lungs. We used spatial resolution and differential cell type analysis to measure DNA damages in both epithelial and immune cells, after either single or repeated exposure. RESULTS: GO induced DNA damages were size and dose dependent, in both exposure scenario. After single exposure to a high dose, both USGO and LGO induced significant DNA damage in the lung parenchyma, but only during the acute phase response (p < 0.05 for USGO; p < 0.01 for LGO). This was followed by a fast lung recovery at day 7 and 28 for both GOs. When evaluating the chronic impact of GO after repeated exposure, only a high dose of LGO induced long-term DNA damages in lung alveolar epithelia (at 84 days, p < 0.05). Regardless of size, low dose GO did not induce any significant DNA damage after repeated exposure. A multiparametric correlation analysis of our repeated exposure data revealed that transient or persistent inflammation and oxidative stress were associated to either recovery or persistent DNA damages. For USGO, recovery from DNA damage was correlated to efficient recovery from acute inflammation (i.e., significant secretion of SAA3, p < 0.001; infiltration of neutrophils, p < 0.01). In contrast, the persistence of LGO in lungs was associated to a long-lasting presence of multinucleated macrophages (up to 84 days, p < 0.05), an underlying inflammation (IL-1α secretion up to 28 days, p < 0.05) and the presence of persistent DNA damages at 84 days. CONCLUSIONS: Overall these results highlight the importance of the exposure scenario used. We showed that LGO was more genotoxic after repeated exposure than single exposure due to persistent lung inflammation. These findings are important in the context of human health risk assessment and toward establishing recommendations for a safe use of graphene based materials in the workplace.


Assuntos
Grafite , Animais , DNA , Dano ao DNA , Grafite/toxicidade , Humanos , Inflamação/induzido quimicamente , Pulmão , Camundongos
3.
Adv Sci (Weinh) ; 9(11): e2104559, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35166457

RESUMO

Graphene has drawn a lot of interest in the material community due to unique physicochemical properties. Owing to a high surface area to volume ratio and free oxygen groups, the oxidized derivative, graphene oxide (GO) has promising potential as a drug delivery system. Here, the lung tolerability of two distinct GO varying in lateral dimensions is investigated, to reveal the most suitable candidate platform for pulmonary drug delivery. Following repeated chronic pulmonary exposure of mice to GO sheet suspensions, the innate and adaptive immune responses are studied. An acute and transient influx of neutrophils and eosinophils in the alveolar space, together with the replacement of alveolar macrophages by interstitial ones and a significant activation toward anti-inflammatory subsets, are found for both GO materials. Micrometric GO give rise to persistent multinucleated macrophages and granulomas. However, neither adaptive immune response nor lung tissue remodeling are induced after exposure to micrometric GO. Concurrently, milder effects and faster tissue recovery, both associated to a faster clearance from the respiratory tract, are found for nanometric GO, suggesting a greater lung tolerability. Taken together, these results highlight the importance of dimensions in the design of biocompatible 2D materials for pulmonary drug delivery system.


Assuntos
Grafite , Imunidade Adaptativa , Animais , Materiais Biocompatíveis/química , Grafite/química , Grafite/farmacologia , Pulmão , Macrófagos , Camundongos
4.
Parasitol Int ; 71: 163-166, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30991111

RESUMO

Leishmaniasis is a poverty-related disease, the chemotherapy of which is based on few drugs. The in vitro macrophage-amastigote model using mouse peritoneal cells, human-monocyte transformed macrophages and immortalized cell lines have been used to test new and safe antileishmanial drugs. Considering the differences for drug sensitivities between these Leishmania infected cells, the efficacy of amphotericin B, pentavalent antimonial, miltefosine and resveratrol was evaluated in a recently developed ex vivo culture of macrophages isolated from mouse lesion induced by L. amazonensis (CD11b+F4/80+CD68+CD14+) compared with infected peritoneal macrophages (CD11b+F4/80+CD68+CD14+). The results show that IC50 values of amphotericin B, miltefosine and pentavalent antimonial for parasites in lesional and peritoneal macrophages were similar, although high doses of these compounds did not result in total clearance of parasites in lesional cells (amphotericin B), peritoneal cells (miltefosine) and both cell cultures (pentavalent antimonial). Amastigotes infecting lesional macrophages were more resistant to resveratrol as compared to parasites in peritoneal macrophages. The cytoxicity of miltefosine and resveratrol was higher in infected peritoneal macrophages than in lesional cells. These data suggest that the antileishmanial effect and citotoxicity of some anti leishmanial compounds are dependent of macrophage source and mouse peritoneal macrophages loaded with amastigotes do not represent the lesion cell.


Assuntos
Antiprotozoários/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Macrófagos/parasitologia , Anfotericina B/farmacologia , Animais , Técnicas de Cultura de Células , Feminino , Concentração Inibidora 50 , Leishmaniose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia
5.
Nanotoxicology ; 13(2): 189-203, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30451576

RESUMO

Graphene oxide (GO) and silver nanoparticles (AgNPs) can be formed into a hybrid nanomaterial, known as GOAg nanocomposite, which presents high antibacterial activity. The successful translation of this nanomaterial into medical use depends on critical information about its toxicological profile. In keeping with a Safe-by-design approach, we evaluated the immunotoxicity of GOAg using J774 and primary murine macrophages. The interaction between GOAg and macrophages was investigated with a scanning electron microscope (SEM). High-throughput technologies were employed to evaluate cell viability, apoptosis/necrosis, mitochondrial depolarization and lipid peroxidation. The inflammogenicity of nanomaterials was predicted after quantification of the cytokines IL-1ß, TNF-α and IL-10 before and after stimulation with interferon-γ (IFN-γ). The ratio between CD80 and CD206 macrophage populations were also estimated. In addition, the production of nitric oxide (NO) was investigated. SEM surveys revealed the potential of GOAg to induce frustrated phagocytosis. GOAg induced a dose-dependent mitochondrial depolarization, apoptosis and lipid peroxidation to J774 macrophages. GOAg toxicity was not modified in an inflammatory microenvironment, but its toxicity was within the range of concentrations used in bacterial inactivation. GOAg did not induce primary macrophages to significantly produce inflammatory cytokines, and previous macrophage stimulation did not enhance GOAg inflammogenicity. Additionally, the pristine nanomaterials and GOAg do not shift macrophages polarization towards M1. Sublethal concentrations of GOAg did not impair macrophages NO production. Finally, we suggest options for improvement of GOAg nanocomposite in ways that may help minimize its possible adverse outcomes to human health.


Assuntos
Anti-Infecciosos/toxicidade , Citocinas/imunologia , Grafite/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanocompostos/toxicidade , Prata/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Humanos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/efeitos dos fármacos , Propriedades de Superfície
6.
Chem Rec ; 18(7-8): 973-985, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29323784

RESUMO

Silver vanadates have been widely investigated because of their many interesting properties and their potential use in several applications. In addition to this, a large number of groups have investigated silver vanadates in the form of nanostructures. Here, we address first the synthesis and properties of nanosilver vanadate. Different techniques, such as precipitation, thermal decomposition, hydrothermal treatment, and sol-gel, are among the methods that have been employed for the controlled synthesis of silver vanadate. The use of nanosilver vanadate for the development of novel electronic devices, catalysts, and antibacterial agents for industry and biomedical applications will then be discussed. In this sense, the present review highlights the major advances regarding the synthesis, properties and applications of nanostructured silver vanadates.

7.
Pathog Dis ; 75(8)2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29045624

RESUMO

Leishmanioses are neglected diseases and the parasite Leishmania survives and proliferates within mononuclear phagocytes, particularly macrophages. In vitro studies of the immunology and cell biology of leishmaniosis are performed in murine peritoneum and bone marrow macrophages and immortalized cell lines despite the normal and injured tissue-specific heterogeneity of macrophages. In this work, we established an ex vivo methodology to culture lesional cells from BALB/c mice infected with Leishmania amazonensis. The cells were successfully isolated from footpad skin lesions and those exhibiting macrophage morphology were maintained in long-term culture (12 days), while the small number of lymphocytes, polymorphonuclear and unidentified cells died after 1 day of culture. The frequency of infected cells decreased over 2 days. Most lesional cells cultivated ex vivo were myeloid CD11b+ CD14+ F4/80+ CD68+ cells. Low levels of IFN-γ and IL-4, IL-10 production and low arginase and phagocytic activities were detected in ex vivo lesional cell cultures. The ex vivo model developed in this study open perspectives for studying the biology of leishmanial lesions in cellular subpopulations and at the single-cell level.


Assuntos
Antígenos de Superfície/imunologia , Leishmania/imunologia , Leishmaniose Cutânea/imunologia , Macrófagos Peritoneais/imunologia , Pele/citologia , Animais , Arginase/biossíntese , Técnicas de Cultura de Células , Células Cultivadas , Modelos Animais de Doenças , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-4/biossíntese , Leishmaniose Cutânea/microbiologia , Linfócitos/microbiologia , Macrófagos Peritoneais/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/microbiologia , Fagocitose/imunologia , Pele/patologia
8.
J Nanobiotechnology ; 14: 12, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26912341

RESUMO

BACKGROUND: Graphene oxide (GO) is a highly oxidized graphene form with oxygen functional groups on its surface. GO is an excellent platform to support and stabilize silver nanoparticles (AgNP), which gives rise to the graphene oxide-silver nanoparticle (GOAg) nanocomposite. Understanding how this nanocomposite interacts with cells is a toxicological challenge of great importance for future biomedical applications, and macrophage cells can provide information concerning the biocompatibility of these nanomaterials. The cytotoxicity of the GOAg nanocomposite, pristine GO, and pristine AgNP was compared toward two representative murine macrophages: a tumoral lineage (J774) and peritoneal macrophages collected from Balb/c mouse. The production of reactive oxygen species (ROS) by J774 macrophages was also monitored. We investigated the internalization of nanomaterials by transmission electron microscopy (TEM). The quantification of internalized silver was carried out by inductively coupled plasma mass spectrometry (ICP-MS). Nanomaterial stability in the cell media was investigated overtime by visual observation, inductively coupled plasma optical emission spectrometry (ICP OES), and dynamic light scattering (DLS). RESULTS: The GOAg nanocomposite was more toxic than pristine GO and pristine AgNP for both macrophages, and it significantly induced more ROS production compared to pristine AgNP. TEM analysis showed that GOAg was internalized by tumoral J774 macrophages. However, macrophages internalized approximately 60 % less GOAg than did pristine AgNP. The images also showed the degradation of nanocomposite inside cells. CONCLUSIONS: Although the GOAg nanocomposite was less internalized by the macrophage cells, it was more toxic than the pristine counterparts and induced remarkable oxidative stress. Our findings strongly reveal a synergistic toxicity effect of the GOAg nanocomposite. The toxicity and fate of nanocomposites in cells are some of the major concerns in the development of novel biocompatible materials and must be carefully evaluated.


Assuntos
Fulerenos/efeitos adversos , Grafite/efeitos adversos , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Nanocompostos/efeitos adversos , Óxidos/efeitos adversos , Prata/efeitos adversos , Animais , Materiais Biocompatíveis/efeitos adversos , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA